[38] F. Feidl et al., “Process-wide control and automation of an integrated continuous

manufacturing platform for antibodies,” Biotechnol. Bioeng., vol. 117, no. 5,

pp. 1367–1380, May 2020.

[39] C. T. Hardy, S. A. Young, R. G. Webster, C. W. Naeve, and R. J. Owens, “Egg

fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can

select different variants of influenza A (H3N2) viruses,” Virology, vol. 211, no. 1,

pp. 302–306, Aug. 1995.

[40] S. J. Zost et al., “Contemporary H3N2 influenza viruses have a glycosylation site

that alters binding of antibodies elicited by egg-adapted vaccine strains,” Proc. Natl.

Acad. Sci. U S A, vol. 114, no. 47, pp. 12578–12583, Nov. 2017.

[41] P. D. Minor et al., “Current challenges in implementing cell-derived influenza

vaccines: implications for production and regulation, July 2007, NIBSC, Potters

Bar, UK,” Vaccine, vol. 27, no. 22, pp. 2907–2913, May 14 2009.

[42] Y. Tao, J. Shih, M. Sinacore, T. Ryll, and H. Yusuf-Makagiansar, “Development

and implementation of a perfusion-based high cell density cell banking process,”

Biotechnol. Prog., vol. 27, no. 3, pp. 824–829, May–Jun. 2011.

[43] P. R. Dormitzer, T. F. Tsai, and G. Del Giudice, “New technologies for influenza

vaccines,” Hum. Vaccin. Immunother., vol. 8, no. 1, pp. 45–58, Jan. 2012.

[44] J. Liu, X. Shi, R. Schwartz, and G. Kemble, “Use of MDCK cells for production of

live attenuated influenza vaccine,” Vaccine, vol. 27, no. 46, pp. 6460–6463, Oct. 2009.

[45] Y. Z. Ghendon et al., “Development of cell culture (MDCK) live cold-adapted (CA)

attenuated influenza vaccine,” Vaccine, vol. 23, no. 38, pp. 4678–4684, Sep. 2005.

[46] M. George, M. Farooq, T. Dang, B. Cortes, J. Liu, and L. Maranga, “Production of

cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully

disposable platform process,” Biotechnol. Bioeng., vol. 106, no. 6, pp. 906–917,

Aug. 2010.

[47] J. Romanova et al., “Live cold-adapted influenza A vaccine produced in Vero cell

line,” Virus Res., vol. 103, no. 1–2, pp. 187–193, Jul. 2004.

[48] M. M. Cox, “Recombinant protein vaccines produced in insect cells,” Vaccine, vol.

30, no. 10, pp. 1759–1766, Feb. 2012.

[49] R. Baxter, P. A. Patriarca, K. Ensor, R. Izikson, K. L. Goldenthal, and M. M. Cox,

“Evaluation of the safety, reactogenicity and immunogenicity of FluBlok(R) trivalent

recombinant baculovirus-expressed hemagglutinin influenza vaccine administered

intramuscularly to healthy adults 50–64 years of age,” Vaccine, vol. 29, no. 12,

pp. 2272–2278, Mar. 2011.

[50] J. C. King, Jr., M. M. Cox, K. Reisinger, J. Hedrick, I. Graham, and P. Patriarca,

“Evaluation of the safety, reactogenicity and immunogenicity of FluBlok trivalent

recombinant baculovirus-expressed hemagglutinin influenza vaccine administered

intramuscularly to healthy children aged 6-59 months,” Vaccine, vol. 27, no. 47,

pp. 6589–6594, Nov. 2009.

[51] S. Rockman, K. L. Laurie, S. Parkes, A. Wheatley, and I. G. Barr, “New

Technologies for Influenza Vaccines,” Microorganisms, vol. 8, no. 11, Nov. 2020.

[52] US National Library of Medicine. (September 20, 2021). ClinicalTrials.gov.

Available: https://clinicaltrials.gov/

[53] A. P. Manceur and A. A. Kamen, “Critical review of current and emerging quan-

tification methods for the development of influenza vaccine candidates,” Vaccine,

vol. 33, no. 44, pp. 5913–5919, Nov. 2015.

[54] P. C. Stepp, K. A. Ranno, E. D. Dawson, K. L. Rowlen, and M. M. Ferris,

“Comparing H1N1 virus quantification with a unique flow cytometer and quanti-

tative PCR,” Bioprocess I, vol. 9, pp. 50–56, 2011.

236

Bioprocessing of Viral Vaccines